
1. Introduction

In C++, constructors and destructors are special member functions of a class that handle object creation
and object destruction, respectively. They provide automatic initialization and cleanup, making
programs easier to write and manage.

 Constructor: Automatically called when an object is created.
 Destructor: Automatically called when an object is destroyed.

2. Importance of Constructors and Destructors

 Automatically initialize data members
 Prevent repetitive code
 Ensure proper cleanup of resources
 Reduce programming errors
 Useful for dynamic memory allocation

3. Constructor

A constructor is a special member function with the same name as the class and no return type, not
even void.

Key Points:

 Called automatically during object creation
 Can be overloaded
 Cannot return a value
 Can have default or parameterized forms

4. Syntax of Constructor

class ClassName {
 public:
 ClassName() { // body of constructor }
};

Example
class Student {
 public:
 int roll;
 Student() { // constructor
 roll = 0;
 }
};

Here, when an object of Student is created, roll is automatically initialized to 0.

5. Types of Constructors

5.1 Default Constructor

 Constructor with no parameters
 Used to provide default values

class Student {
 public:
 int roll;
 Student() { roll = 0; }
};

5.2 Parameterized Constructor

 Constructor with parameters
 Used to initialize objects with specific values

class Student {
 public:
 int roll;
 Student(int r) { roll = r; }
};

5.3 Copy Constructor

 Used to create a new object as a copy of an existing object
 Syntax: ClassName(const ClassName &obj);

Student(const Student &s) {
 roll = s.roll;
}

6. Constructor Overloading

 Multiple constructors with different parameter lists
 Compiler chooses the correct constructor based on arguments

class Student {
 public:
 Student() { }
 Student(int r) { }
 Student(int r, string n) { }
};

7. Dynamic Constructors

Constructors can also be used with dynamic memory allocation to initialize pointers and arrays at
runtime.

class Array {
 int *arr;
 int size;
 public:
 Array(int s) {
 size = s;
 arr = new int[size];
 }
};

8. Destructor

A destructor is a special member function that is called automatically when an object goes out of
scope or is deleted.

Key Points:

 Has the same name as the class prefixed with ~
 No return type and no parameters
 Used to release memory or resources
 Only one destructor per class (cannot be overloaded)

9. Syntax of Destructor

class ClassName {
 public:
 ~ClassName() { // body of destructor }
};

Example
class Student {
 public:
 ~Student() { cout << "Object destroyed"; }
};

When a Student object is destroyed, the destructor prints the message.

10. Use of Destructors

 Free dynamically allocated memory
 Close files
 Release system resources
 Perform cleanup operations

class File {
 FILE *fp;
 public:
 File() { fp = fopen("data.txt","w"); }
 ~File() { fclose(fp); }
};

11. Constructor vs Destructor

Feature Constructor Destructor

Called When object is created When object is destroyed

Name Same as class ~ + class name

Return type None None

Parameters Can have Cannot have

Overloading Yes No

12. Order of Execution

1. Base class constructors are called first
2. Derived class constructors are called after base class
3. Destructors are called in reverse order

o Derived class destructor first
o Base class destructor last

13. Constructor and Destructor in Inheritance

Example
class Base {
 public:
 Base() { cout << "Base Constructor"; }
 ~Base() { cout << "Base Destructor"; }
};

class Derived : public Base {
 public:
 Derived() { cout << "Derived Constructor"; }
 ~Derived() { cout << "Derived Destructor"; }
};

Output:

Base Constructor
Derived Constructor
Derived Destructor

Base Destructor

14. Dynamic Memory and Destructors

 Dynamically allocated memory using new must be released using delete in destructors
 Prevents memory leaks

class Array {
 int *arr;
 public:
 Array(int size) { arr = new int[size]; }
 ~Array() { delete[] arr; }
};

15. Advantages of Constructors

 Automatic initialization
 Avoid repetitive code
 Supports multiple initialization through overloading
 Enhances readability and maintainability

16. Advantages of Destructors

 Automatic cleanup
 Prevents memory leaks
 Ensures resources are released
 Simplifies program design

17. Common Mistakes

 Forgetting to use destructor for dynamic memory
 Overloading destructors (not allowed)
 Not using constructors for initialization
 Calling destructors explicitly (avoid unless necessary)

18. Best Practices

 Always initialize objects using constructors
 Use destructors for releasing memory and resources
 Prefer default and parameterized constructors for flexibility
 Avoid unnecessary use of destructors for stack-allocated objects

19. Applications

 Resource management (files, memory)
 Automatic initialization of objects
 Object cleanup in classes with dynamic memory
 Safe handling of inheritance hierarchies

20. Conclusion

Constructors and destructors are fundamental for object management in C++. Constructors ensure
that objects are properly initialized, while destructors ensure resources are released when objects are no
longer needed. Proper understanding and use of constructors and destructors improve program
reliability, memory management, and maintainability in C++ programming.

